Properties of Toeplitz Graphs

Farzaneh Ramezani

K. N. Toosi University of Technology, IPM

11th May 2013
Introduction
Definitions
Existence results

Independence number

Maximum matching
Properties of Toeplitz Graphs

Outline

Introduction
Definitions
Existence results

Independence number

Maximum matching
A Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

\[
\begin{pmatrix}
 a & b & c & d & e \\
 f & a & b & c & d \\
 g & f & a & b & c \\
 h & g & f & a & b \\
 i & h & g & f & a \\
\end{pmatrix}
\]
A Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

\[
\begin{pmatrix}
 a & b & c & d & e \\
 f & a & b & c & d \\
 g & f & a & b & c \\
 h & g & f & a & b \\
 i & h & g & f & a \\
\end{pmatrix}
\]
A Toeplitz graph $T_n\langle t_1, t_2, \ldots, t_k \rangle$ is a (undirected) graph whose vertex set is $\{1, 2, \ldots, n\}$ and, there is an edge between the vertices i and j iff $|j - i| = t_l$ for some $l = 1, 2, \ldots, k$.

It is easily seen that a Toeplitz graph has a $(0, 1)$ symmetric Toeplitz adjacency matrix.
A Toeplitz graph $T_n\langle t_1, t_2, \ldots, t_k \rangle$ is a (undirected) graph whose vertex set is $\{1, 2, \ldots, n\}$ and, there is an edge between the vertices i and j iff $|j - i| = t_l$ for some $l = 1, 2, \ldots, k$.

It is easily seen that a Toeplitz graph has a $(0, 1)$ symmetric Toeplitz adjacency matrix.

Any symmetric Toeplitz Matrix can be determined by it’s first row. If the first row of a $(0, 1)$ symmetric Toeplitz matrix is δ then we denote the corresponding Toeplitz graph with T^δ, or $T_n\langle t_1, t_2, \ldots, t_k \rangle$, where n is length of δ, and $t_i + 1$’s are the place of non-zero arrays of δ.
A Toeplitz graph $T_n\langle t_1, t_2, \ldots, t_k \rangle$ is a (undirected) graph whose vertex set is $\{1, 2, \ldots, n\}$ and, there is an edge between the vertices i and j iff $|j - i| = t_l$ for some $l = 1, 2, \ldots, k$.

It is easily seen that a Toeplitz graph has a $(0, 1)$ symmetric Toeplitz adjacency matrix.

Any symmetric Toeplitz Matrix can be determined by it’s first row. If the first row of a $(0, 1)$ symmetric Toeplitz matrix is δ then we denote the corresponding Toeplitz graph with T^δ, or $T_n\langle t_1, t_2, \ldots, t_k \rangle$, where n is length of δ, and $t_i + 1$’s are the place of non-zero arrays of δ.

Toeplitz matrix
Examples

$T_8\langle 3, 5 \rangle$

$T_{22}\langle 3, 4 \rangle$
Examples

\[T_8\langle 3, 5 \rangle \]

\[T_{22}\langle 3, 4 \rangle \]
Examples

\[T_{8} \langle 3, 5 \rangle \]

\[T_{22} \langle 3, 4 \rangle \]
Examples

\[T_8 \langle 3, 5 \rangle \]

\[T_{22} \langle 3, 4 \rangle \]
Examples

$T_8 \langle 3, 5 \rangle$

$T_{22} \langle 3, 4 \rangle$
Examples

\[T_8\langle 3, 5 \rangle \]

\[T_{22}\langle 3, 4 \rangle \]
Examples

\[T_8\langle 3, 5 \rangle \]

\[T_{22}\langle 3, 4 \rangle \]
Examples

$T_8\langle 3, 5 \rangle$

$T_{22}\langle 3, 4 \rangle$
Examples

$T_8\langle 3, 5\rangle$

$T_{22}\langle 3, 4\rangle$
Examples

$T_{8}\langle 3, 5 \rangle$

$T_{22}\langle 3, 4 \rangle$
Outline

Introduction
Definitions
Existence results

Independence number

Maximum matching
Connectivity [C. Heuberger]

- The graph $T_{cn} \langle ct_1, ct_2, \ldots, ct_k \rangle$ is the c disjoint copies of graphs isomorphic to $T_n \langle t_1, t_2, \ldots, t_k \rangle$.

- Let $T_n \langle a, b \rangle$ be a Toeplitz graph with $1 \leq a < b < n$,
 - If $\gcd(a, b) > 1$, or $a + b \geq n + 2$, then $T_n \langle a, b \rangle$ is not connected.
Connectivity [C. Heuberger]

- The graph $T_{cn}\langle ct_1, ct_2, \ldots, ct_k \rangle$ is the c disjoint copies of graphs isomorphic to $T_n\langle t_1, t_2, \ldots, t_k \rangle$.
- Let $T_n\langle a, b \rangle$ be a Toeplitz graph with $1 \leq a < b < n$,
 - If $\gcd(a, b) > 1$, or $a + b \geq n + 2$, then $T_n\langle a, b \rangle$ is not connected.
 - If $\gcd(a, b) = 1$, $a + b = n + 1$, then $T_n\langle a, b \rangle$ has a Hamiltonian path but no Hamiltonian cycle.
Connectivity [C. Heuberger]

- The graph \(T_{cn} \langle ct_1, ct_2, \ldots, ct_k \rangle \) is the \(c \) disjoint copies of graphs isomorphic to \(T_n \langle t_1, t_2, \ldots, t_k \rangle \).
- Let \(T_n \langle a, b \rangle \) be a Toeplitz graph with \(1 \leq a < b < n \),
 - If \(\gcd(a, b) > 1 \), or \(a + b \geq n + 2 \), then \(T_n \langle a, b \rangle \) is not connected.
 - If \(\gcd(a, b) = 1 \), \(a + b = n + 1 \), then \(T_n \langle a, b \rangle \) has a Hamiltonian path but no Hamiltonian cycle.
 - If \(\gcd(a, b) = 1 \), \(a + b \leq n + 1 \), then \(T_n \langle a, b \rangle \) is connected.
The graph $T_{cn}\langle ct_1, ct_2, \ldots, ct_k\rangle$ is the c disjoint copies of graphs isomorphic to $T_n\langle t_1, t_2, \ldots, t_k\rangle$.

Let $T_n\langle a, b\rangle$ be a Toeplitz graph with $1 \leq a < b < n$,

- If $gcd(a, b) > 1$, or $a + b \geq n + 2$, then $T_n\langle a, b\rangle$ is not connected.
- If $gcd(a, b) = 1$, $a + b = n + 1$, then $T_n\langle a, b\rangle$ has a Hamiltonian path but no Hamiltonian cycle.
- If $gcd(a, b) = 1$, $a + b \leq n + 1$, then $T_n\langle a, b\rangle$ is connected.
Connectivity [C. Heuberger]

Let $T_n\langle a_1, a_2, \ldots, a_m \rangle$ be a Toeplitz graph and $d_k := \gcd(a_1, \ldots, a_k)$ for $k = 1, \ldots, m$. If $d_m = 1$, and $d_k + a_{k+1} \leq n + 1$, for $k = 1, \ldots, m - 1$, then $T_n\langle a_1, a_2, \ldots, a_m \rangle$ is connected.
Let n, a, b are all odd. Then $T_{n\langle a, b \rangle}$ is non-Hamiltonian.

Suppose n, a, b, are not all odd, with $b \equiv 1(\text{mod}2a)$, $n \geq 5b$, if n is even, and $n \geq 6b + a$, if n is odd. Then $T_{n\langle a, b \rangle}$ is Hamiltonian.
Introduction

Existence results

Hamiltonian Toeplitz graphs [C. Heuberger]

- Let n, a, b are all odd. Then $T_n\langle a, b \rangle$ is non-Hamiltonian.
- Suppose n, a, b, are not all odd, with $b \equiv 1 \mod 2a$, $n \geq 5b$, if n is even, and $n \geq 6b + a$, if n is odd. Then $T_n\langle a, b \rangle$ is Hamiltonian.
Bipartite Toeplitz Graphs

For $\alpha \in \mathbb{N}$ let B^α denote the infinite 0 – 1 sequence,

$$ (0 \ldots 0 \underbrace{10 \ldots 10}_{\alpha} \ldots 0 \underbrace{10 \ldots 10}_{2\alpha} \ldots 0 \ldots 0 \ldots \ldots) . $$

Theorem [Euler]. An infinite sequence I induce a bipartite Toeplitz graph iff I is dominated by one of the sequences B^α, where $\alpha \in \{1, 2, 4, 8, \ldots\}$.
Bipartite Toeplitz Graphs

In the graph $T_n(a, b)$, let $\alpha = a - 1$, and $\delta = b - a$.

- If $n \leq 2\alpha$, then S is dominated by the sequence $(0 \ldots 0 1 \ldots 1)^{\alpha}$, which is easily shown to induce a bipartite Toeplitz graph.

- If $\alpha = (2\beta + 1)2^r$ with $\beta \in \mathbb{N}$ and if 2^{r+1} divides δ, then S is again dominated by a finite subsequence of B^{α}, $\alpha = 2^r$, and therefore induces a bipartite Toeplitz graph, too.
Bipartite Toeplitz Graphs

In the graph $T_n\langle a, b \rangle$, let $\alpha = a - 1$, and $\delta = b - a$.

- If $n \leq 2\alpha$, then S is dominated by the sequence $(0 \ldots 0 \underbrace{1 \ldots 1}_\alpha)$, which is easily shown to induce a bipartite Toeplitz graph.
- If $\alpha = (2\beta + 1)2^r$ with $\beta \in \mathbb{N}$ and if 2^{r+1} divides δ, then S is again dominated by a finite subsequence of B^α, $\alpha = 2^r$, and therefore induces a bipartite Toeplitz graph, too.
If however, 2^{r+1} does not divide δ, and if $n > 2\alpha + \delta - \gcd(\alpha, \delta)$, then T_n is not bipartite.

If 2^{r+1} does not divide δ and if $n \leq 2\alpha + \delta - \gcd(\alpha, \delta)$, then the sequence $B^\delta = (\underbrace{0 \ldots 0}_{\alpha} \underbrace{1 \ldots 0}_{\delta} \ldots \underbrace{0 \ldots 0}_{\delta} \underbrace{1 \ldots 0}_{\alpha} \ldots 0)$ defines a bipartite Toeplitz graph.
If however, 2^{r+1} does not divide δ, and if $n > 2\alpha + \delta - \gcd(\alpha, \delta)$, then T_n is not bipartite.

If 2^{r+1} does not divide δ and if $n \leq 2\alpha + \delta - \gcd(\alpha, \delta)$, then the sequence $B^\delta = (0\ldots010\ldots01\ldots010\ldots0)$ defines a bipartite Toeplitz graph.
Planarity, [Euler]

- Infinite case: An infinite \((0 - 1)\)-sequence \(S\) defines a planar Toeplitz graph if and only if \(S\) is dominated by a \((0 - 1)\)-sequence whose 1-entries are at positions \(1 + t_1\), \(1 + t_2\) and \(1 + (t_1 + t_2)\).

- Consequently, for infinite, planar Toeplitz graphs \(T_\infty \langle t_1, t_2, \ldots, t_k \rangle\), \(k\) can’t be more than 3.
Planarity, [Euler]

- Infinite case: An infinite $(0 - 1)$-sequence S defines a planar Toeplitz graph if and only if S is dominated by a $(0 - 1)$-sequence whose 1-entries are at positions $1 + t_1$, $1 + t_2$ and $1 + (t_1 + t_2)$.

- Consequently, for infinite, planar Toeplitz graphs $T_\infty \langle t_1, t_2, \ldots, t_k \rangle$, k can’t be more than 3.
Planarity, [Euler]

- Finite case: k can be arbitrarily large,
- If $T_n\langle t_1, t_2, \ldots, t_k \rangle$ is planar, and $c \in \mathbb{N}$, then $T_{cn}\langle ct_1, ct_2, \ldots, ct_k, cn - 1 \rangle$ is planar.
Planarity, [Euler]

- Finite case: k can be arbitrarily large,
- If $T_n \langle t_1, t_2, \ldots, t_k \rangle$ is planar, and $c \in \mathbb{N}$, then $T_{cn} \langle ct_1, ct_2, \ldots, ct_k, cn - 1 \rangle$ is planar.
Outline

Introduction
Definitions
Existence results

Independence number

Maximum matching
A Greedy type algorithm

1. set $I = \emptyset$, $V^* = V$, goto 2.;
2. choose $i^* = \min\{i : i \in V^*\}$, set $I := I \cup i^*$, goto 3.;
A Greedy type algorithm

1. set $I = \emptyset$, $V^* = V$, goto 2.;
2. choose $i^* = \min\{i : i \in V^*\}$, set $I := I \cup i^*$, goto 3.;
3. set $V^* := V^* \setminus (\{i^*\} \cup N_T(i^*))$, goto 4.;
A Greedy type algorithm

1. set $I = \emptyset$, $V^* = V$, goto 2.;
2. choose $i^* = \min \{i : i \in V^*\}$, set $I := I \cup i^*$, goto 3.;
3. set $V^* := V^* \setminus (\{i^*\} \cup N_T(i^*))$, goto 4.;
4. if $V^* = \emptyset$, STOP, else goto 2.;
A Greedy type algorithm

1. set $I = \text{emptyset}$, $V^* = V$, goto 2.;
2. choose $i^* = \text{min}\{i : i \in V^*\}$, set $I := I \cup i^*$, goto 3.;
3. set $V^* := V^* \setminus (\{i^*\} \cup N_T(i^*))$, goto 4.;
4. if $V^* = \text{emptyset}$, STOP, else goto 2.;
When does the Algorithm apply?

- $T_n\langle a \rangle$
- $T_n\langle 1, b \rangle$
When does the Algorithm apply?

- $T_n\langle a \rangle$
- $T_n\langle 1, b \rangle$
- $T = T_{k(a+b)}\langle a, b \rangle$
When does the Algorithm apply?

- $T_n\langle a \rangle$
- $T_n\langle 1, b \rangle$
- $T = T_{k(a+b)}\langle a, b \rangle$
- $T = T_n\langle a, a + 1 \rangle$
When does the Algorithm apply?

- $T_n\langle a \rangle$
- $T_n\langle 1, b \rangle$
- $T = T_{k(a+b)}\langle a, b \rangle$
- $T = T_n\langle a, a + 1 \rangle$
- $T = T_n\langle a, b \rangle$ if $n \leq a + b + 1$.
When does the Algorithm apply?

- $T_n\langle a \rangle$
- $T_n\langle 1, b \rangle$
- $T = T_k(a+b)\langle a, b \rangle$
- $T = T_n\langle a, a + 1 \rangle$
- $T = T_n\langle a, b \rangle$ if $n \leq a + b + 1$.

The algorithm gives a maximum independent set in $T = T_n\langle s, t \rangle$, for all n, if and only if $s = 1$, or $t = ks \pm 1$, where k is an odd integer.
When does the Algorithm apply?

- $T_n\langle a \rangle$
- $T_n\langle 1, b \rangle$
- $T = T_{k(a+b)}\langle a, b \rangle$
- $T = T_n\langle a, a+1 \rangle$
- $T = T_n\langle a, b \rangle$ if $n \leq a + b + 1$.
- The algorithm gives a maximum independent set in $T = T_n\langle s, t \rangle$, for all n, if and only if $s = 1$, or $t = ks \pm 1$, where k is an odd integer.
Outline

Introduction
Definitions
Existence results

Independence number

Maximum matching
A Greedy type algorithm

MAT:
(i): $n = |V(T)|$, $q =$number of layers of $T_n \langle s, t \rangle$, $M = \emptyset$.
(ii): $M = M \cup MXM(\langle V_q \rangle)$
A Greedy type algorithm

MAT:
(i): $n = |V(T)|$, $q =$number of layers of $T_n\langle s, t \rangle$, $M = \emptyset$.
(ii): $M = M \cup MXM(\langle V_q \rangle)$
(iii): If $T_n\langle s, t \rangle \setminus M$, has some single in it’s last layer, put $M = M \cup S$, where S is the set of left edges of these single vertices.
A Greedy type algorithm

MAT:
(i): $n = |V(T)|$, $q =$number of layers of $T_n\langle s, t \rangle$, $M = \emptyset$.
(ii): $M = M \cup MXM(\langle V_q \rangle)$
(iii): If $T_n\langle s, t \rangle \setminus M$, has some single in it’s last layer, put $M = M \cup S$, where S is the set of left edges of these single vertices.
(iv): $T = T_n\langle s, t \rangle \setminus M$, which is again a Toeplitz graph, GO TO (i).
A Greedy type algorithm

MAT:
(i): \(n = |V(T)|, \ q = \text{number of layers of } T_n\langle s, t \rangle, \ M = \emptyset. \)
(ii): \(M = M \cup MXM(\langle V_q \rangle) \)
(iii): If \(T_n\langle s, t \rangle \setminus M \), has some single in it’s last layer, put \(M = M \cup S \), where \(S \) is the set of left edges of these single vertices.
(iv): \(T = T_n\langle s, t \rangle \setminus M \), which is again a Toeplitz graph, GO TO (i).